Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly conductive p++-AlGaAs/n++-GaInP tunnel junctions for ultra-high concentrator solar cells

Identifieur interne : 000110 ( Main/Repository ); précédent : 000109; suivant : 000111

Highly conductive p++-AlGaAs/n++-GaInP tunnel junctions for ultra-high concentrator solar cells

Auteurs : RBID : Pascal:14-0074922

Descripteurs français

English descriptors

Abstract

Tunnel junctions are key for developing multijunction solar cells (MJSC) for ultra-high concentration applications. We have developed a highly conductive, high bandgap p++-AlGaAs/n++-GaInP tunnel junction with a peak tunneling current density for as-grown and thermal annealed devices of 996 A/cm2 and 235 A/cm2, respectively. The J-V characteristics of the tunnel junction after thermal annealing, together with its behavior at MJSCs typical operation temperatures, indicate that this tunnel junction is a suitable candidate for ultra-high concentrator MJSC designs. The benefits of the optical transparency are also assessed for a lattice-matched GaInP/GaInAs/Ge triple junction solar cell, yielding a current density increase in the middle cell of 0.506 mA/cm2 with respect to previous designs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0074922

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly conductive p
<sup>++</sup>
-AlGaAs/n
<sup>++</sup>
-GaInP tunnel junctions for ultra-high concentrator solar cells</title>
<author>
<name sortKey="Barrigon, Enrique" uniqKey="Barrigon E">Enrique Barrigon</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Ivan" uniqKey="Garcia I">Ivan Garcia</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Renewable Energy Laboratory</s1>
<s2>Golden, Colorado 80401</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barrutia, Laura" uniqKey="Barrutia L">Laura Barrutia</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rey Stolle, Ignacio" uniqKey="Rey Stolle I">Ignacio Rey-Stolle</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Algora, Carlos" uniqKey="Algora C">Carlos Algora</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0074922</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0074922 INIST</idno>
<idno type="RBID">Pascal:14-0074922</idno>
<idno type="wicri:Area/Main/Corpus">000123</idno>
<idno type="wicri:Area/Main/Repository">000110</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Concentrator solar cells</term>
<term>Current density</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>Indium phosphide</term>
<term>Mismatch lattice</term>
<term>Multijunction solar cells</term>
<term>Ternary compound</term>
<term>Thermal annealing</term>
<term>Transparent material</term>
<term>Tunnel effect</term>
<term>Tunnel junction</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Jonction tunnel</term>
<term>Cellule solaire concentrateur</term>
<term>Cellule solaire multijonction</term>
<term>Effet tunnel</term>
<term>Densité courant</term>
<term>Recuit thermique</term>
<term>Caractéristique courant tension</term>
<term>Accommodation réseau</term>
<term>Composé ternaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Matériau transparent</term>
<term>Germanium</term>
<term>GaInP</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tunnel junctions are key for developing multijunction solar cells (MJSC) for ultra-high concentration applications. We have developed a highly conductive, high bandgap p
<sup>++</sup>
-AlGaAs/n
<sup>++</sup>
-GaInP tunnel junction with a peak tunneling current density for as-grown and thermal annealed devices of 996 A/cm
<sup>2</sup>
and 235 A/cm
<sup>2</sup>
, respectively. The J-V characteristics of the tunnel junction after thermal annealing, together with its behavior at MJSCs typical operation temperatures, indicate that this tunnel junction is a suitable candidate for ultra-high concentrator MJSC designs. The benefits of the optical transparency are also assessed for a lattice-matched GaInP/GaInAs/Ge triple junction solar cell, yielding a current density increase in the middle cell of 0.506 mA/cm
<sup>2</sup>
with respect to previous designs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly conductive p
<sup>++</sup>
-AlGaAs/n
<sup>++</sup>
-GaInP tunnel junctions for ultra-high concentrator solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BARRIGON (Enrique)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GARCIA (Ivan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BARRUTIA (Laura)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>REY-STOLLE (Ignacio)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ALGORA (Carlos)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30</s1>
<s2>28040 Madrid</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Renewable Energy Laboratory</s1>
<s2>Golden, Colorado 80401</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>399-404</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000501140250010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0074922</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tunnel junctions are key for developing multijunction solar cells (MJSC) for ultra-high concentration applications. We have developed a highly conductive, high bandgap p
<sup>++</sup>
-AlGaAs/n
<sup>++</sup>
-GaInP tunnel junction with a peak tunneling current density for as-grown and thermal annealed devices of 996 A/cm
<sup>2</sup>
and 235 A/cm
<sup>2</sup>
, respectively. The J-V characteristics of the tunnel junction after thermal annealing, together with its behavior at MJSCs typical operation temperatures, indicate that this tunnel junction is a suitable candidate for ultra-high concentrator MJSC designs. The benefits of the optical transparency are also assessed for a lattice-matched GaInP/GaInAs/Ge triple junction solar cell, yielding a current density increase in the middle cell of 0.506 mA/cm
<sup>2</sup>
with respect to previous designs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Jonction tunnel</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Tunnel junction</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Unión túnel</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire concentrateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Concentrator solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire multijonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Multijunction solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Effet tunnel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tunnel effect</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Efecto túnel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Densité courant</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Current density</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Densidad corriente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>097</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000110 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000110 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0074922
   |texte=   Highly conductive p++-AlGaAs/n++-GaInP tunnel junctions for ultra-high concentrator solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024